Indian Statistical Institute, Bangalore Centre. Back-Paper Exam : Differential Equations

Instructor : Yogeshwaran D.

Date : May 27th, 2015.

Answer for 50 points.

Time Limit : 3 hours.

Give necessary justifications and explanations for all your arguments.

If you are citing results from the class/books, mention it clearly. Convergence of series needs to be justified.

1. Determine whether the following differential equations have a solution and if so is the solution unique.

(a)
$$y' = \sqrt{y}$$
; $y(0) = 0$. (5)

(b)
$$y' = x^2 sin(y) - yln(x)$$
; $y(1) = 2$. (5)

2. The Chebyshev differential equation is

$$(1 - x^{2})y'' - xy' + \alpha^{2}y = 0.$$

Determine two independent power-series solutions for the Chebyshev equation and also mention the radius of convergence for each series. Further, show that if $\alpha = n, n \ge 0$, then there is a polynomial solution of the differential equation. (10)

3. Consider the *n*th order $(n \ge 2)$ homogeneous equation on an interval I = [a, b]:

$$L[y] = \sum_{i=0}^{n} p_i(x) y^{(n-i)} = 0,$$

where $y^{(k)}$ denotes the kth derivative of y and $p_0(x) \equiv 1$. Assume that the functions p_i 's are continuous on I. Let the functions y_1, \ldots, y_n

satisfy $L[y_i] = 0, \forall i \in \{1, \ldots, n\}$. Define the Wronskian as

$$W(y_1,\ldots,y_n):=|A_{n,n}|,$$

where $A_{n,n}$ is the matrix defined as below :

$$A_{n,n} := \begin{pmatrix} y_1 & y_2 & \cdots & y_n \\ y_1^{(1)} & y_2^{(1)} & \cdots & y_n^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{pmatrix}$$

- (a) Show that either W is identically 0 in I or $\min_{x \in I} |W(x)| > 0$ for n = 3. (4)
- (b) Assuming the above statement for n ≥ 2, show that if y₁,..., y_n are linearly independent solutions then any function y_g satisfying L[y_g] = 0 can be expressed as a linear combination of y₁,..., y_n.
 (6)
- 4. In the IVPs $\mathbf{x}' = A\mathbf{x}(t)$ with the coefficient matrix A given below, explain the behaviour of the solution as $t \to \infty$. (10)

(b)

$$A = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix}, \ \mathbf{x}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$
$$A = \begin{pmatrix} -1 & 1 \\ -5 & 4 \end{pmatrix}, \ \mathbf{x}(0) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}.$$

$$a^{2}u_{xx} = u_{t} \ u(0,t) = T_{1}, \ u(L,t) = T_{2}, \ x \in (0,L), \ t > 0,$$

 $u(x,0) = f(x), \ u_{t}(x,0) = g(x).$

Assume that v(x) is the the steady-state solution to the above equation (i.e., $v_t(x,t) = 0$) and the actual solution is u(x,t) = v(x) + w(x,t). Show that w(x,t) satisfies the heat equation with zero temperature boundary conditions. Further, find v(x) and by method of seperation of variables, find w(x,t). Lastly, show that $u(x,t) \to v(x)$ as $t \to \infty$. (10) 6. Let D be the open ball of unit radius in \mathbb{R}^2 and ∂D denote its boundary i.e., the unit circle. Let $f \in C(\partial D)$ and $U \in C^2(D)$. Firstly show that the following Dirichlet problem

$$\Delta U(x,y) = 0, \ (x,y) \in D, \ U(x,y) = f(x,y) for(x,y) \in \partial D$$

in polar co-ordinates is

$$V_{rr}(r,\theta) + \frac{1}{r^2} V_{\theta\theta}(r,\theta) + \frac{1}{r} V_r(r,\theta) = 0, \ V(1,\theta) = \phi(\theta) = f(\cos\theta, \sin\theta).$$

Now, solve the above PDE using separation of variables. (10)